Семинарское занятие 13 (MATLAB)
Тема: Проверка domain shift (сдвиг распределений) и базовая адаптация: нормализация и подбор порога (threshold).
Цель занятия
1) Смоделировать domain shift: train-домены и production-домен с изменением распределений признаков.
2) Проверить сдвиг распределений статистически (KS-test, PSI) и визуально (гистограммы/boxplot).
3) Обучить классификатор на train и оценить деградацию качества на shifted test.
4) Выполнить базовую адаптацию: нормализация по домену и настройка порога под стоимость ошибок.
5) Сравнить “до/после” адаптации по метрикам и ROC/PR.
Идея эксперимента
Мы обучаем модель на домене A (train) и тестируем на домене B (shifted). Затем делаем простейшую адаптацию без переобучения модели:
• корректируем нормализацию (domain-wise calibration),
• подбираем порог решения t по validation окну домена B (или по целевой стоимости).

Важно: порог и любые настройки должны подбираться на validation (или на небольшом окне “production”), а не на final test.
Задание
1. Сгенерировать синтетический датасет: train-домен A и shifted-домен B (сдвиг среднего/масштаба + изменение корреляций).
2. Разбить данные: TrainA / ValB / TestB (например 60%/20%/20% от домена B для val/test).
3. Обучить базовую модель (например логистическая регрессия или линейный SVM) на TrainA с нормализацией по TrainA.
4. Оценить качество на TestB: confusion matrix, precision/recall/F1, ROC-AUC, PR/AP.
5. Проверить domain shift между TrainA и ValB по каждому признаку: KS-test и PSI. Вывести таблицу признаков с наибольшим shift.
6. Адаптация 1: нормализация по домену B (пересчитать μ,σ на ValB и применить к ValB/TestB), оставив модель фиксированной.
7. Адаптация 2: подобрать порог t на ValB (например по max F1 или минимизации стоимости R(t)=c_FN*FN+c_FP*FP).
8. Сравнить результаты на TestB: baseline vs (domain-normalize) vs (domain-normalize + tuned threshold).
9. Сделать вывод: какой подход помог и почему (какие признаки дрейфуют и какие ошибки уменьшились).
Что сдавать
1) MATLAB-скрипт: Seminar13_DomainShift_Check_Adaptation.m
2) Отчёт 1–2 страницы: таблица KS/PSI, графики распределений для топ-2 признаков, ROC/PR, таблица метрик “до/после”, вывод.
3) (Опционально) сценарий с cost-sensitive порогом (cFN >> cFP).
Критерии оценивания (макс. 15 баллов)
• Генерация доменов + правильный split — 3 б.
• Проверка shift (KS + PSI) + визуализация — 4 б.
• Baseline модель + метрики на shifted test — 3 б.
• Адаптация (нормализация + threshold tuning) — 4 б.
• Вывод и интерпретация ошибок — 1 б.
Бонус +2 б: подбор порога по стоимости ошибок и сравнение с max F1.
Шаблон кода MATLAB (копируйте и запускайте)
%% Seminar 13: Domain shift detection + basic adaptation (normalization, threshold)
rng(42);

%% 1) Synthetic data: Domain A (train) and Domain B (shifted)
N = 2000; d = 5;

% Domain A: Gaussian features
XA = randn(N, d);
% True linear boundary for labels (same concept initially)
w = [1.2; -0.8; 0.6; 0.0; 0.4];
b = -0.2;
pA = sigmoid(XA*w + b);
yA = double(rand(N,1) < pA); % 0/1

% Domain B: covariate shift (shift mean/scale + correlation)
muShift = [0.8, -0.3, 0.0, 0.5, -0.2];
scale = [1.3, 0.7, 1.0, 1.5, 0.8];
Z = randn(N, d);

% create correlation by mixing features
M = eye(d);
M(1,2) = 0.6; M(2,1) = 0.2;
M(3,4) = 0.5; M(4,3) = 0.1;
XB = (Z*M) .* scale + muShift;

% labels in B: keep same concept OR add slight concept drift
drift = 0.15; % set 0 for pure covariate shift, >0 for mild concept drift
pB = sigmoid(XB*w + (b + drift)); % small intercept drift
yB = double(rand(N,1) < pB);

yAcat = categorical(yA);
yBcat = categorical(yB);

%% 2) Split: TrainA, ValB, TestB
% Train: domain A only
cvA = cvpartition(yAcat,'Holdout',0.3);
idxTrA = training(cvA);
idxHoldA = test(cvA);

XA_tr = XA(idxTrA,:);
yA_tr = yA(idxTrA);
yA_tr_cat = yAcat(idxTrA);

% Domain B: val/test split 50/50 from full B
cvB = cvpartition(yBcat,'Holdout',0.5);
idxValB = training(cvB);
idxTeB = test(cvB);

XB_val = XB(idxValB,:);
yB_val = yB(idxValB);
yB_val_cat = yBcat(idxValB);

XB_te = XB(idxTeB,:);
yB_te = yB(idxTeB);
yB_te_cat = yBcat(idxTeB);

%% 3) Baseline model: logistic regression (fitglm) trained on A with A-normalization
% Normalize by TrainA
muA = mean(XA_tr,1);
sgA = std(XA_tr,0,1); sgA(sgA==0)=1;

XA_trN = (XA_tr - muA) ./ sgA;
XB_valN_A = (XB_val - muA) ./ sgA; % normalize B using A stats (baseline)
XB_teN_A = (XB_te - muA) ./ sgA;

% Train logistic regression
tblTr = array2table(XA_trN);
tblTr.y = yA_tr;
mdl = fitglm(tblTr, 'y ~ .', 'Distribution','binomial');

% Predict probabilities on B (baseline)
p_val_base = predict(mdl, array2table(XB_valN_A));
p_te_base = predict(mdl, array2table(XB_teN_A));

% Default threshold 0.5
t0 = 0.5;
yhat_te_base = double(p_te_base >= t0);

%% 4) Domain shift checks between TrainA and ValB
% KS-test per feature (trainA vs valB) using normalized-by-A space or raw space
ksP = zeros(1,d);
psi = zeros(1,d);

for j=1:d
 % KS on raw feature (more interpretable)
 [~, ksP(j)] = kstest2(XA_tr(:,j), XB_val(:,j));
 psi(j) = computePSI(XA_tr(:,j), XB_val(:,j), 10);
end

Tshift = table((1:d)', ksP', psi', 'VariableNames', {'Feature','KS_pvalue','PSI'});
disp('Domain shift table (TrainA vs ValB):'); disp(Tshift);

% Plot distributions for top-2 PSI features
[~,ord] = sort(psi,'descend');
top2 = ord(1:2);
for k=1:2
 j = top2(k);
 figure;
 histogram(XA_tr(:,j), 30, 'Normalization','probability'); hold on;
 histogram(XB_val(:,j), 30, 'Normalization','probability');
 grid on; xlabel(sprintf('Feature %d', j)); ylabel('Probability');
 legend('TrainA','ValB'); title(sprintf('Distribution shift: Feature %d (PSI=%.3f)', j, psi(j)));
end

%% 5) Metrics baseline on TestB
disp('=== Baseline (A-normalize, threshold 0.5) on TestB ===');
reportBinMetrics(yB_te, yB_te_cat, yhat_te_base, p_te_base);

%% 6) Adaptation #1: domain-wise normalization for B (use ValB stats)
muB = mean(XB_val,1);
sgB = std(XB_val,0,1); sgB(sgB==0)=1;

XB_valN_B = (XB_val - muB) ./ sgB;
XB_teN_B = (XB_te - muB) ./ sgB;

p_val_norm = predict(mdl, array2table(XB_valN_B));
p_te_norm = predict(mdl, array2table(XB_teN_B));

yhat_te_norm = double(p_te_norm >= t0);

disp('=== Adaptation #1 (B-normalize, threshold 0.5) on TestB ===');
reportBinMetrics(yB_te, yB_te_cat, yhat_te_norm, p_te_norm);

%% 7) Adaptation #2: threshold tuning on ValB (choose by max F1 or min cost)
% Option A: max F1
tGrid = linspace(0.05, 0.95, 91);
F1 = zeros(size(tGrid));

for i=1:numel(tGrid)
 th = tGrid(i);
 yhat_val = double(p_val_norm >= th);
 F1(i) = computeF1(yB_val, yhat_val);
end

[~,iBest] = max(F1);
tBestF1 = tGrid(iBest);
fprintf('Best threshold by F1 on ValB: t=%.2f (F1=%.3f)\n', tBestF1, F1(iBest));

figure; plot(tGrid, F1, '-'); grid on;
xlabel('Threshold'); ylabel('F1 on ValB');
title('Threshold tuning (max F1) on ValB');

% Option B (optional): cost-sensitive threshold (cFN >> cFP)
cFN = 5; cFP = 1; % example: missing positive is 5x more costly
cost = zeros(size(tGrid));
for i=1:numel(tGrid)
 th = tGrid(i);
 yhat_val = double(p_val_norm >= th);
 [TN,FP,FN,TP] = confusionCounts(yB_val, yhat_val);
 cost(i) = cFN*FN + cFP*FP;
end
[~,iC] = min(cost);
tBestCost = tGrid(iC);
fprintf('Best threshold by COST on ValB: t=%.2f (Cost=%.1f)\n', tBestCost, cost(iC));

figure; plot(tGrid, cost, '-'); grid on;
xlabel('Threshold'); ylabel('Cost on ValB');
title('Threshold tuning (min cost) on ValB');

% Evaluate on TestB using tuned threshold (choose one)
tUse = tBestF1; % or tBestCost
yhat_te_tuned = double(p_te_norm >= tUse);

disp('=== Adaptation #2 (B-normalize + tuned threshold) on TestB ===');
reportBinMetrics(yB_te, yB_te_cat, yhat_te_tuned, p_te_norm);

%% ===== Helper functions =====
function y = sigmoid(x)
y = 1 ./ (1 + exp(-x));
end

function f1 = computeF1(yTrue, yHat)
[~,~,FN,TP] = confusionCounts(yTrue, yHat);
FP = sum(yHat==1 & yTrue==0);
prec = TP / max(TP+FP, 1);
rec = TP / max(TP+FN, 1);
f1 = 2*prec*rec / max(prec+rec, 1e-12);
end

function [TN,FP,FN,TP] = confusionCounts(yTrue, yHat)
TN = sum(yHat==0 & yTrue==0);
FP = sum(yHat==1 & yTrue==0);
FN = sum(yHat==0 & yTrue==1);
TP = sum(yHat==1 & yTrue==1);
end

function reportBinMetrics(yNum, yCat, yHatNum, pPos)
yHatCat = categorical(yHatNum);
CM = confusionmat(yCat, yHatCat, 'Order', [categorical(0) categorical(1)]);
TN = CM(1,1); FP = CM(1,2); FN = CM(2,1); TP = CM(2,2);

acc = (TP+TN)/max(sum(CM(:)),1);
prec = TP/max(TP+FP,1);
rec = TP/max(TP+FN,1);
f1 = 2*prec*rec/max(prec+rec,1e-12);

[~,~,~,AUC] = perfcurve(yNum, pPos, 1);
[reca, precCurve, ~, AP] = perfcurve(yNum, pPos, 1, 'xCrit','reca', 'yCrit','prec');

fprintf('Acc=%.3f Prec=%.3f Rec=%.3f F1=%.3f ROC-AUC=%.3f AP=%.3f\n', acc, prec, rec, f1, AUC, AP);

figure; confusionchart(yCat, yHatCat);
title(sprintf('Confusion Matrix | Acc=%.3f F1=%.3f', acc, f1));

figure; [Xroc,Yroc,~,~] = perfcurve(yNum, pPos, 1);
plot(Xroc,Yroc); grid on; xlabel('FPR'); ylabel('TPR');
title(sprintf('ROC (AUC=%.3f)', AUC));

figure; plot(reca, precCurve); grid on; xlabel('Recall'); ylabel('Precision');
title(sprintf('PR (AP≈%.3f)', AP));
end

function PSI = computePSI(xTrain, xProd, nBins)
% PSI using quantile bins from train
edges = quantile(xTrain, linspace(0,1,nBins+1));
edges(1) = -inf; edges(end) = inf;

p = histcounts(xTrain, edges, 'Normalization','probability');
q = histcounts(xProd, edges, 'Normalization','probability');

% avoid zeros
eps0 = 1e-6;
p = max(p, eps0);
q = max(q, eps0);

PSI = sum((p - q) .* log(p ./ q));
end

Интерпретация результата (кратко)
• Если KS p-value очень маленькое и PSI высокий — признак дрейфует (распределение заметно изменилось).
• Если качество сильно падает на домене B при нормализации по домену A — вероятен covariate shift или дрейф сенсора.
• Domain-wise нормализация часто частично исправляет covariate shift (масштаб/смещение).
• Подбор порога на ValB позволяет учитывать новую частоту классов или стоимость ошибок (label shift/требования бизнеса).
Примечания
• В реальных задачах адаптацию делают на небольшом “окне” свежих данных, где можно получить разметку или хотя бы оценить распределение.
• Не подбирайте порог по финальному test — это утечка. Всегда используйте validation.
• Для более сильной адаптации нужны методы domain adaptation или дообучение (retraining).
